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The quali tat ive p rope r t i e s  of  the nonsteady motion of a finite volume of fluid comple te ly  bounded by a 
f r ee  su r face  is d i scussed  in this paper .  The mot ion a r i s e s  f r o m  a specif ied init ial  s ta te .  The ex te rna l  body 
fo rces  a r e  known functions of  the coordinates  and the t ime.  The fluid can be viscous  o r  ideal ,  posses s ing  
su r face  tension o r  devoid of it. 

1. S ta tement  of  the P rob lem.  The p r o b l e m  of the motion of a finite m a s s  of fluid reduces  to a s ea rch  
for  a reg ion  ~Qt ~ / P  and a solution v(x, t) = (vl(x, t), v2(x, t), v.~(x, t)), and p(x, t) of  the N a v i e r - S t o k e s  s y s t e m  
of equations 

vt ~- v ' v v  ~ --VP -~ ~Av ~- g(x, t), div v = 0 (1.1) 

in this reg ion  so that  on the boundary I" t of the reg ion  ~2 t the boundary conditions 

v .n r  t = Vn  for X ~ Ft; (1.2) 

(1.3) 
p n r t  - -  2 v D n v t  = 20Hnrt for x ~ r t ,  

and the ini t ial  condition a t  t = 0 

v(x, 0) = re(X), x ~ "(20 ~ p" (1.4) 

a r e  sat isf ied.  The reg ion  t2 is a s s u m e d  to be specif ied and bounded. 

Here  v is the ve loc i ty  vec to r ,  p is the fluid p r e s s u r e ,  g is the acce l e r a t i on  of the ex te rna l  body fo rces ,  
v-> 0 is the v i scos i ty  of the fluid, and a_> 0 is the su r face  tension coefficient.  The quanti t ies y and a a r e  
a s sumed  to be cons tants ,  and the vec to r  g is a s sumed  to be a known function of x and t. The fluid densi ty is 
a s sumed  to be equal  to unity. The d i sp lacemen t  ve loc i ty  of the su r f ace  F t in the d i rec t ion of the outer  no rma l  
is denoted in (1.2) by Vn, and the unit  vec to r  of the outer  no rma l  to Ft  is denoted by uFt. If the sur face  Ft  is 
specif ied by the equation F(x, t) = 0, then V n  = - - F t i J v F [ .  , '  I n  the condition (1.3) D is the s t r a in  r a t e  tensor  with 
e l emen t s  Dik = (0vi/SXk+ ~Vk/aXi)/2 (i, k = 1, 2, 3), and H is double the mean  cu rva tu re  of the sur face  Ft. It  is 
a s s u m e d  that  H > 0  if  r t  is convex ex te rna l  to the fluid. 

Eq. (1.2) Indicates  that  the s u r f ace  r t  bounds the fluid volume ~t .  According to (1.3), ex te rna l  sur face  
fo rces  on the boundary  of  the reg ion  12t a r e  absent ,  i .e . ,  the boundary r t  is a f r ee  sur face .  

The vec tor  field v0 in (1.4) is a s sumed  to be specif ied and solenoidah 

div v 0 = 0, x ~ D. (1.5) 

If y >0,  then v 0 s t i l l  sa t i s f ies  the congruence condition with (1.3): 

D n r  t - -  (nr t ' D n r t )  n r  t = 0, x ~ F0~ t = 0. (1.6) 

The main  difficulty with invest igat ing the p r o b l e m  (1.1)-(1.4) cons is t s  of the neces s i ty  of  seeking the 
reg ion  ~t- However ,  the c h a r a c t e r i s t i c s  of  the condition (1.2) p e r m i t  t r ans fo rming  this p r o b l e m  into another  
one in which the reg ion  in which the solution is defined is specif ied in advance.  This s i tuat ion is achieved by 
convers ion  to Lagrangfan  coordina tes .  

The t r a j e c t o r y  of a pa r t i c l e  located a t  t ime  t = 0 a t  the point $ is specif ied by the formula  
x = x ( ~ ,  t ) ,  ( 1 . 7 )  

in which the functions xi( ~, t) (i= 1, 2, 3) a r e  de te rmined  f r o m  the Cauchy p rob l em 
d x / d t :  v(x, t), x =  ~ at t : 0 .  (1.8) 

The v a r i a b l e s  ~ = (~1, ~2, ~3) a r e  called Lagrangian .  If the re la t ionship  F(x(~, t), t)-= f(~, t) = 0 defines the f r ee  
boundary,  then i t  follows f r o m  (1.2) and (1.6) that  ft  = 0 and the equation of a f r ee  boundary in Lagrangian  coord i -  
na tes  is s imp ly  f (0  =0. The re fo re ,  if  one cons t ruc t s  F t  as  the shape F0---F with the mapping (1.7), condition 
(1.2) will be au tomat ica l ly  sa t is f ied.  
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Let  us formulate  the problem (1.1)-(1.4) in Lagrangian coordinates in the case v = 0 and G= 0 (an ideal 
fluid with zero surface  tension). It is requi red  to find the vector  x(}, t) and the function p(~, t) in the region 
s x [0, T] so that the following equations, the initial and boundary conditions, a re  sat isf ied:  

M * x t t  q- V~P = g(x, t), (let M = i; (1.9) 

p ---- 0 for ~ ~ ['; (1.10) 

X ---- ~, x t = v o ( ~ )  at t = O, ( 1 . 1 1 )  

and divvy0 = 0. Here V~ and div t a re  the gradient  and the divergence with r e spec t  to the var iables  (!h, ~2, ~a), 
M is th6 Jacobian matr ix  of the~mapping (1.7) for t fixed, and Mik= ~x i /~k  (i, k = 1, 2, 3). 

This ar t ic le  is a review of papers  which have been devoted to the investigation of the problem (1.1)-(1.4) 
in the exact  formulation,  as well as of some models of it. The resu l t s  of investigations conducted during the 
las t  15 years  through the initiative and under the direct ion of L. V. Ovsyannikov compr ise  the basis of this 
ar t ic le .  

2. Existence Theorems.  The f i rs t  (and still the only) r e su l t  on the solvability of the problem (1.9)- 
(1.11) belongs to L. V. Ovsyannikov [1] and is based on the theory which he developed of the nonlinear Cauchy 
problem on the scale of Banach spaces [2]. 

Let  s be a s imply connected two-dimensional  region,  v0 be  an i r rotat ional  two-dimensional  vector  field 
in ~,  and g(x, t) = 0. in this case  the problem (1.9)-(1.11) is equivalent to the following: 

fo~ I~1=1, t > o  h~=~h: ~ ~ ~-' :{R~ ~ ' ~  ~ ~ \ ~ ] ~ ,  (2.1) 
b : l : t  

t ; "r '-:~[R "cw'c "~d'~ l f "c ' ~  w-cI:d'r 
I~1 =~ i'r 

for I~] ~ t, t = 0 w = w0(~) , h = h0(~) , (2.2) 

where h(s t) is the conformal  mapping of the unit c i rc le  of the complex plane ~ onto the region ~t  of  the plane 
z = x 1 + ix2,  and w(~, t) -~ w*(z, t) is the complex potential of the motion. 

We define the Banach space Bp(p>0) as the set  of t races  on the c i rc le  [~ [= 1 of the analytic functions 
u(~) for which the norm 

n : - - o o  

is finite, where u n a re  the coefficients of  the Laurent  ser ies  of the function u(~), which is analytic in the r ing  
e-P < [~l < e< The set  S = U B o is the scale of the Banach spaces.  The following theorem [1] is valid: 

0 < P  

If  the initial data (2.2) a r e  such that 

then a constant  K>0 is found such that the solution of the problem (2.1) and (2.2) exists and belongs to the 
space Bp for any P<P0 for values of t satisfying the inequality 

9 + /{It[ < Po. (2.3) 

This solution is unique in the scale S and is holomorphic with r e spec t  to t at  the point t=0  in the region (2.3). 

There a re  still no other resu l t s  of any kind on the solvabi l i ty  of the general  problem (1.9)-(1.:ll). We 
note in this connection that an existence and uniqueness theorem of a solution of the three-dimensional  
C a u c h y - P o i s s o n  problem s imi lar  to (1.9)-(1.11) on water waves in c lasses  of analytic functions has been 
proven in [3]. A proof of the solvability of the problem (1.9)-(1.11) in a c lass  of functions of finite smoothness 
encounters  significant difficulties, whose nature is explained below (also see [4]). 

The problem (1.1)-(1.4) with ~ > 0 and G = 0 has been investigated in [5, 6], where the condition (1.3) with 
~=0 is replaced by a more  general  one, p n - 2 ~ D n = p 0 f x  , t)n (P0(X, t) is a specified distribution of the external  
p r e s s u r e  on the fluid surface).  Lacking the possibi l i ty here of giving a complete presentat ion of the resu l t s  of 
[5, 6] ,  we r e s t r i c t  ourse lves  to a reduced formulation of one of them. 

Let  F ~ C2+% v o ~ E~+~(Q) with some a ~ (0, l), g= 0, and P0 = 0, and let the congruence conditions (1.5) 
and (1.6) be satisfied. We will denote the Holder no rm Iv0]~+~)= R. For  any R > 0  is found a T>0 such that the 
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p rob l em (1.1)-(1.4) with v>0  and ~=0 has a unique solution for t ~ [0, T ] ,  and v and p belong to ce r t a in  Holder  
c l a s s e s .  In addition, one can find for any T > 0  an R > 0  such that  the p r o b l e m  (1.1)-(1.4) is uniquely soluble on 
the in te rva l  [0, T]. 

We note that  a l l  the theo rems  mentioned above on the solvabi l i ty  of the p rob l ems  of the nonsteady motion 
of a fluid with a f ree  boundary a r e  of a local  nature  in the exac t  formulat ion.  This r e s t r i c t i o n  is a s soc ia ted  
with the e s sence  of the ma t t e r .  One can desc r ibe  a s i tuat ion in which in the p r o c e s s  of motion two points of 
the f r ee  su r f ace  which a r e  ini t ial ly located a t  a finite dis tance approach  one another  with subsequent  impac t  of  
one p a r t  of the fluid with the other .  The ma thema t i ca l  nature  of  the pecu l ia r i t i es  which a r i s e  is compl ica ted  
and has not been  inves t iga ted  up to this t ime.  Also the p r o b l e m  of the poss ib le  loss  of smoothness  of the f ree  
su r face  as t ime p r o g r e s s e s  h a s  not been invest igated.  Final ly,  not a single exact  r e s u l t  of a g e n e r a l  nature  
ex i s t s  concerning the so lvabi l i ty  of  the p r o b l e m  (1.1)-(1.4) in the case  a ~  0. 

3. F in i t e -Dimens iona l  Models.  Below a r e  enumera t ed  examples  of solutions of the p rob l em (1.1)-(1.4) 
f o r  which the s e a r c h  r educes  to the in tegra t ion  of a s y s t e m  of o rd ina ry  equations.  The r i c h e s t  c l ass  of such 
solut ions is  allowed in the case  v = 0 and a = O. These  involve mot ions  with a l inear  ve loc i ty  field d i scovered  by 
Dir ich le t  ( see  [7]) and inves t igated in deta i l  in [8] (also see  [9, 10]). The mapping (1.7) is given here  by the 
fo rmula  

x -~ A ( t ) ~ -  x0(t), (3.1) 

so that  M=A.  I t  is n e c e s s a r y  for  the ex is tence  of such solut ions that  the vec tor  of  the ex te rna l  fo rces  be a 
l inear  function of x: 

g ~ G(t)x ~-go(t). (3.2) 

By v i r tue  of  (1.9)-(1.11) the m a t r i x  A and the vec to r  x0 sa t i s fy  the equations 

A ' "  - -  GA = q A * - 1 N ;  (3.3) 

x0 --  Gx 0 = go § q A * - l b  (3.4) 

and the ini t ial  conditions 

A (0) ----- E, A' (0) = A0; (3.5) 

xo (0) --  0, X'o (0) = x~0. (3.6) 

H e r e  A~ is an  a r b i t r a r y  constant  m a t r i x  with SpA~ = 0, N= diag~nl, n2, n3}, where  nl, n2, n a a r e  a r b i t r a r y  posi t ive  
number s ,  b and x~0 a r e  a r b i t r a r y  constant  v e c t o r s ,  and the notation 

Sp (A-~A')  2 --  SO (A--~GA) 
q = Sp (A--~A*--~N) 

is  introduced.  The fo rmula  for the p r e s s u r e  is o f  the f o r m  

p = q(l  ~- 2b.~ - -  [ . N ~ ) / 2 ,  

where  Z is a constant .  The f r ee  su r face  I '  is an  e l l ipsoid  with the equation 

l + 2b.~ - -  ~.N~ = 0. 

We will  r e s t r i c t  o u r s e l v e s  in the following to mot ions  in which g = 0 ,  b = 0 ,  and x~0=0. By v i r tue  of (3.2), 

(3.4), and (3.6), xo(t) =0.  

CauchyWs p r o b l e m  (3.3) and (3.5) is uniquely so lvable  for a l l  t [9]. The s y s t e m  (3.3) with G = 0 has eight 
in tegra l s  which exp re s s  conse rva t ion  of the m a s s  (det A= 1), energy ,  c i rcula t ion ,  and angular  momen tu m of a 
de formed  fluid e l l ipsoid [7]. The re  ex i s t  a number  of exac t  solut ions of the p r o b l e m  (3.1). We will d i scuss  

one of them,  which is found in [8]. 

Le t  N = E ,  and l e t  the m a t r i x  A~ have nonzero  e l emen t s  2(a~)22 = 2(a~)33=-(a~)li = - 2 b ,  and (a~)a2=-(a~)23 = o~. 
Then the m a t r i x  A has nonzero e lements  all  = m,  a22 = a33 = k ,  and a32 =--a23  = n ,  and 

] / m  \ 0 J " " = ~  0 m  dr , 

and the function m(t) is found by quadra tu re  f r o m  the equation 

m "~ ~- 4m* 3b~ 4 ~ :  ( i  - -  m) ( 3 . 7 )  
l 4- 2m a 

with the condition m(0) = 1. The equation of the f r ee  boundary r t  in Eu le r ian  coordina tes  is 

146 



x ~  , 2 " 
~-  m ( z~  § x ~ )  = c ~ _ ~  l .  

The i n t e r p r e t a t i o n  of  the  s o l u t i o n  i s  a s  fo l lows .  A t  the  i n i t i a l  i n s t a n t  the f luid f i l l ed  a s p h e r e  F and was  in  a 

s t a t e  o f  u n i f o r m  r o t a t i o n  on which  an  i r r o t a t i o n a l  l i n e a r  v e l o c i t y  f i e ld  was  s u p e r i m p o s e d .  L e t  us a s s u m e  for  
d e f i n i t e n e s s  t ha t  w ~ 0 and b>  0. Then d u r i n g  0 < t < t ,  the  s p h e r e  F is  e l o n g a t e d  into an  e l . l ipso id  of  r e v o l u t i o n  
F t  wi th  a x i s  x 1 un t i l  i t s  s e m i m a j o r  ax i s  t a k e s  on  the  m a x i m u m  v a l u e  c m .  = c[3(b/r 1]if2 a t  the  i n s t a n t  t = t , .  
A f t e r  th i s  the  e l l i p s o i d  s t a r t s  to c o n t r a c t ,  p a s s e s  the  shape  of  the s p h e r e  F a t  the  t i m e  t = 2 t . ,  and then  s h r i n k s  

to the  p l a n e  x l = 0 ,  m e r g i n g  wi th  i t  a s  t ~ .  

Now l e t  us  c o n s i d e r  the  c a s e  w = O .  T h e  m a t r i x  A is  d i a g o n a l ,  and the mo t ion  i s  i r r o t a t i o n a l .  If b > 0 ,  
then  m >  1 for  t >  0 and m--* ~ a s  t--* ~ .  Thus  when b > 0 and w = 0, the  e l l i p s o i d  F t  e xpa nds  in  the  d i r e c t i o n  o f  
the  x l - a x i s ,  s h r i n k i n g  to th is  a x i s  when t ~ .  F r o m  the p o i n t  of  v i ew  of  the  s t a b i l i t y  of  the  m o t i o n  th is  r e s u l t  
i n d i c a t e s  t ha t  the  i r r o t a t i o n a l  m o t i o n  s p e c i f i e d  by  the  m a t r i x  A fo r  w = 0 i s  u n s t a b l e  with r e s p e c t  to a s  s m a l l  
v o r t i c a l  p e r t u r b a t i o n s  a s  d e s i r e d .  

The  q u e s t i o n  o f  the  b e h a v i o r  of  the s o l u t i o n s  of the C a u c h y  p r o b l e m  (3.3) and (3.5) a s  t ~  has  not  y e t  
b e e n  s o l v e d .  The h y p o t h e s i s  t ha t  when A~ r 0 th i s  p r o b l e m  has  no bounded  so lu t i ons  s e e m s  p l a u s i b l e .  

Now l e t  us  d i s c u s s  t w o - d i m e n s i o n a l  mo t ions  with a l i n e a r  v e l o c i t y  f ie ld .  In th is  c a s e  ~ and x deno te  two-  
d i m e n s i o n a l  v e c t o r s ,  and A,  A~, and N a r e  s e c o n d - o r d e r  m a t r i c e s .  The s o l u t i o n  of the p r o b l e m  (3.3) and (3.5) 
h e r e  d e s c r i b e s  the mo t ion  of  a r o t a t i n g  d e f o r m e d  e l l i p s e .  Us ing  the m o t i o n  i n t e g r a l s ,  i t  i s  p o s s i b l e  to i n t e g r a t e  
th i s  p r o b l e m  in q u a d r a t u r e s  [11]. I t  t u r n s  ou t  t ha t  i f  the  i n i t i a l  s t a t e  is  not  r e s t ,  the fo l lowing  a l t e r n a t i v e  
o c c u r s .  E i t h e r  one of  the  s e m i a x e s  of  the e l l i p s e  i n c r e a s e s  i n d e f i n i t e l y  a s  t -~ ~ o r  the  mo t ion  is  u n i f o r m  
r o t a t i o n  of  a f luid c i r c l e  abou t  i t s  c e n t e r .  

We wi l l  c o n s i d e r  the t w o - d i m e n s i o n a l  p r o b l e m  (3.3) and (3.5) wi th  

In th is  e a s e  the  s e m i a x e s  of  the e l l i p s e  at(t)  and a2(t) a r e  r e l a t e d  by  the  and N = E ( r  is  a c i r c l e  o f  r a d i u s  c).  

equa t ions  
1 ,2 ~C4(02 

(a, + a2') + - + (3.8) 

ala2 ---- c2~ al(O) = a2(O) = c, 

and the  a n g u l a r  r o t a t i o n a l  v e l o c i t y  of  the  e l l i p s e  i s  equa l  to 4c2w(al+a2) -2. The c a s e  b = 0  c o r r e s p o n d s  to 
r o t a t i o n  o f  the  c i r c l e  a s  a r i g i d  body.  I t  is  e v i d e n t  f r o m  (3.8) tha t  an  i n i t i a l  d e f o r m a t i o n  of  the  v e l o c i t y  f ie ld  
a s  s m a l l  a s  d e s i r e d  (b ~ 0) d i s r u p t s  the i n d i c a t e d  s t e a d y  mot ion .  

The supp ly  o f  e x a c t  so lu t i ons  of the  p r o b l e m  (1.1)-(1.4)  in the  c a s e  ~ ~ 0 and a s  0 is  e x t r e m e l y  s p a r s e .  
The on ly  n o n t r i v i a l  e x a m p l e  i s  the  s o l u t i o n  which  d e s c r i b e s  the  r a d i a l  m o t i o n  by  i n e r t i a  of  a spher ] :ca l  l a y e r  
[12-15] .  The  t w o - d i m e n s i o n a l  a n a l o g u e  of  th is  s o l u t i o n  d e s c r i b e s  the  r a d i a l  m o t i o n  of  a c i r c u l a r  riLng [13, 16]. 
The t w o - d i m e n s i o n a l  p r o b l e m  of  r o t a t i o n a l l y  s y m m e t r i c  m o t i o n  of  a r o t a t i n g  r i n g  i s  m o r e  g e n e r a l .  

4. R o t a t i n g  Ring.  We wi l l  d i s c u s s  the  t w o - d i m e n s i o n a l  p r o b l e m  (1.1)-(1.4)  wi th  s p e c i a l  i n i t i a l  da ta :  
i s  the  c i r c l e  rl0 < r  = Ixl <r20, 

~ r = ~ 0 r  -1,  Ve ~ l'o(r) at t = 0, rl0 < r < r20, (4.1) 

w h e r e  v r is  the  r a d i a l  and  v 0 is  the  c i r c u m f e r e n t i a l  c o m p o n e n t  of  the v e l o c i t y  in  the p o l a r  c o o r d i n a t e  s y s t e m  
( r ,  0), X0 is  a s p e c i f i e d  c o n s t a n t ,  and v 0 i s  a s p e c i f i e d  funct ion .  The s o l u t i o n  of  th i s  p r o b l e m  has  the f o r m  

vr = z(t)r -~, v0 = v0 (r, t), p = p(r, t), 

and the  equa t ions  of  the  f r e e  b o u n d a r i e s  a r e :  r = r i ( t )  , i - - 1 ,  2. Th is  so lu t i on  i s  i n t e r p r e t e d  a s  the mot ion  of  a 
f luid r o t a t i n g  r i n g  u n d e r  the a c t i o n  of  i n e r t i a l ,  v i s c o u s ,  and  s u r f a c e  t e n s i o n  f o r c e s .  

The p r o b l e m  (1.1)-(1.3)  and (4.1) for  u > 0  r e d u c e s  to the  s o l u t i o n  of the a s s o c i a t e d  s y s t e m  of one p a r a -  
bo l i c  and t h r e e  o r d i n a r y  equa t ions  for  the func t ions  v0, X, and r i and to q u a d r a t u r e  for  f inding p.  This  p r o b l e m  
was  i n v e s t i g a t e d  in [17], w h e r e  the c a s e  a= 0 i s  d i s c u s s e d ,  and in [18]. The r e s u l t s  of  t h e s e  p a p e r s  a r e  
d e t a i l e d  be low.  

L e t  us  denote  the a n g u l a r  m o m e n t u m  of  the r i n g  by  L and i t s  a r e a  by  Z. The qua n t i t i e s  ~ an(] L a r e  
i n t e g r a l s  o f  the  mot ion .  We i n t r o d u c e  the d i m e n s i o n l e s s  p a r a m e t e r  

= L21p~Ehl2 
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(p is the fluid density). F i r s t  let us assume that a> 0. Then when the inequality ~ > ~  ~ 5.17 is satisfied, the 
problem has two steady solutions descr ibing motion of the r ing as a rigid body. If fl <fl., no steady solutions 
exist. 

Let  us assume that v0 ~ C 2+~[rl0,'r~0] and the congruence conditions v~(rt0)=v~(r20) = 0 a re  satisfied. If 
<fl , ,  a value t o (finite or  infinite) is found so that rt(t)--*0 as t--~t 0. 

If  f l>_fl, ,  two  modes of motion are  possible:  vanishing of the inner radius  and stabilization of the motion 
to rotat ion of the r ing as a r igid body. The sufficient conditions for rea l iza t ion of each of these modes a re  
given in [18]. For  example,  with the condition 

8r2o ~] PEo < L ~, 

where E 0 is the total energy of the fluid at  the t ime t = 0, the inner radius of the r ing  vanishes.  

In the case  a = 0 the qualitative picture of the motion changes significantly. If L r 0and  X0 <0, in the con-  
dition (4.1), the rotat ing r ing f i r s t  converges to the center  until the inner radius reaches  a positive minimum. 
Then divergence of the r ing begins at  once. There a re  two different divergence modes. If both inequalities 

' ~ ~ ~  ( 4 . 2 )  

< 4 ,  ~ 3  r]~ f rv~ d r < 2 '  
r lo 

a r e  satisfied,  then r 1 = O ( ~ ' a s  t - - ~ .  If even one of these inequalities is replaced by the opposite one, then 
rl(t) =O(t) as t ~  [17]~ 

The case  v0=0 in the condition (4.1) corresponds  to purely  rad ia l  motion of the ring. If at  the same time 
a~  0, the r ing  ei ther  diverges to infinity or  its inner radius vanishes at  some instant. If o-- 0 and the f i rs t  of 
the inequalities (4.2) is satisfied,  l im rl(t) =f i fo>0 exists as t~ r162  In the opposite case r l - ~ o  as t ~ .  

Thus far  we have been dealing with the motion of a viscous ring. In the case v=O the problem simplifies 
and permi t s  integrat ion in quadratures  [9]. Here five qualitatively different modes of motion occur ,  depending 
on the initial data. i n p a r t i c u l a r ,  when a ~  0 and L ~ 0, radia l  self-osci l la t ions of a rotat ing r ing of ideal fluid 

a re  possible.  

5. Steady Motions. Steady motions of an isolated volume of viscous capi l lary fluid permi t  a simple 
descript ion:  The fluid rota tes  as a rigid body about an axis para l le l  to a specified angular momentum vector ,  
and the free surface  is motionless in a rotat ing coordinate sys tem.  It is determined as a closed minimal su r -  
face in the centr ifugal  force field which r e s t r i c t s  the specified volume. 

The problems of the existence,  stabili ty,  and branching of the equil ibrium shapes of a rotat ing fluid 
are  detailed at  g rea t  length in [19] and will not be discussed in this ar t ic le .  If the fluid lacks surface tension, 
then steady motion of an isolated volume can only be t ransla t ional  when v ~ 0. In the two-dimensional  case  
rotat ion of a c i rc le  and a r ing  as a rigid body is also allowed. If a=O and v = 0 simultaneously,  nontrivial  steady 
motions of an isolated fluid volume are  possible.  An example of such motion [20] is constructed below, in this 
example the flow of an ideal fluid is rotat ional ly symmet r i c  with the z -axis ,  and its vor t ic i ty  is proport ional  to 
the distance r to this axis. 

If one denotes the s t r eam function by r and the radia l  and axial velocit ies by vr  and Vz, then v r = 
- r - l ~ / a z ,  v z = r - l ~ / a r ,  and r sat isf ies the equation 

where k is a constant. The c i rcumferen t ia l  veloci ty v 0 is equal to cq/r ,  where cq is a constant.  
the indicated kind Euler t s  equations allow the integral  

t + ~ (~,~ + vi + c~q~/r~) + k ,  = v c~-~ c o n s t  P T 

For flows of 

(5.2) 

We will look for f ree  surfaces  F s imi lar  to a torus.  Let  us denote the meridional  c ross  section of F by T 
and the plane region bounded by the curve  "/by w. The conditions on the f ree  boundary p = 0, ~b -- 0, and Eq. (5.2) 

lead to the equations 

~]v = O, " 7 ~  ~ = c V  t -- q~/r 2, (5.3) 

where 0/0n is differentiation with r e s p e c t  to the direct ion of the outer normal  to T. By vir tue of (5.1) and (5.3), 
the constants k and c a re  related by the equation 
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Let us switch in (5.1) and (5.3) to the new variables  

r = a + bx, z = by, ~(r, z) = abc(t  - -  ~t~)l/2w(x, g) 

(a and b a re  some constants with the dimension of length, and g= q/a) ,  and let us set  e= b / a .  The shapes of the 
curve T and the region r on the x, y plane a r e  denoted by T0 and w0, respect ively .  In the new variables  the 
problem (5.1) and (5.3) takes the form 

~ [~ - ~ (~ + ~)-2l~ndvo (5.4) 
h w  e 01o (l+sx)~ v, 

t + sx Ox (i-- ~2)l/z ~ (1 + sx) de% ' 
o) e 

0~ I = J-~• [i  - ~2(1 + ~x)-~] '/~ w[v.=O, ~ v .  (i-p,-")li~ 

(~X is the Laplacian in the var iables  x and y). 

If s=O, the problem (5.4) has a one -pa rame te r  family of solutions in which Yo is the c i rc le  x2+y2=c 2 and 
w = (x2+ y2-c2)/2c. It has been demonstrated that for sufficiently small  s in the case of some dependence p= ~(e) 
this p rob lem has a t h r e e - p a r a m e t e r  family of solutions. A fou r -pa rame te r  family of solutions of the problem 
(5.1) and (5.3) cor responds  to it. The kinetic energy  of the fluid, the moment  of inert ia  of the meridional  c ross  
sect ion of the free surface with r e spec t  to the s t ra ight  line r = const  which pas ses  through the center  of gravi ty  
of the c ross  section, the length of the meridional  c ross  section of the free sur. face, and the distance f rom the 
center of  gravi ty of the c ross  sec t ion to the s y m m e t r y  axis (the rat io of the last  two numbers should be suf-  
ficiently small) can be selected as the determining physical  pa ramete r s  of this family. 

6. Small Per turbat ions.  Fi rs t ,  we will discuss the motion of an ideal fluid with zero surface tension. 
Such motion is determined by the solution x(~, t) and p(~, t) of the problem (t.9)-(1.11) in some cylinder QT = 

• [0, T]. The solution x and p corresponding to the initial velocity field xt(~, 0) =v0(0,  div v0=0, will be 
called the fundamental one. 

Let  us consider  in this cylinder QT another solution ~ and ~ of the problem (1.9)-(1.1!) with the initial 
velocity field 

~0(~) = vo(D + v0(~),: div V0(~) = o. 

The solution ~ and "~ is Called the perturbed solution, and the function V0 is called the initial perturbation.  Let 
us set ~ =x + X, ~ =p + V~p" M -1 X+ P ,  and let us call  the functions X and P the perturbat ions of the fundamental 
solution. Assuming smal lness  of the initial per turbat ion,  one can hope that the functions X and P will be smal l  
for some time interval.  Substituting the express ions  for ~ and ~ into Eqs. (1.9)-(1.11) and discarding te rms  
which a re  nonlinear in the per turbat ions ,  we a r r ive  at  a linear problem for the functions X and P. 

The linear model in the theory of nonsteady motions of a fluid with a free boundary is of in teres t  for two 
reasons .  In the f i r s t  place,  t inear izat ion on the solution of the problem with a free boundary offers  the poss i -  
bility of  understanding the mathemat ical  nature of this problem. In the second place, if there exists some solu-  
tion which is defined for all t > 0 ,  then analysis  of the behavior of small  perturbations as t--*~ will permi t  
a s sess ing  the stabili ty of  this solutiori. 

An enormous  number of papers has been devoted to the investigation of small  per turbat ions of the r e s t  or  
uni form rotat ion of a fluid. Par t icu la r ly  re levant  here are  papers on the linear wave theory,  as well as c l a s s i -  
cal  papers  on the determinat ion of the figure of the Earth,  which go back as far  as the time of Newton. How- 
ever ,  there has been an absence up until recent ly  of papers  in which the problem of small  per turbat ions  of an 
a r b i t r a r y  solution of Eu le r ' s  equations in a region with a par t ia l ly  or completely free boundary has been 
studied. The formulations of  this problem and the f i rs t  resu l t s  of its investigation a re  given in [13], where the 
case of  the i r ro ta t ional  motion of a-fluid is discussed.  The general  problem of small  perturbations of the 
motion of an ideal fluid with a free boundary in an i r rota t ional  field of body forces has been investigated in [21]. 
This problem reduces  in the case of a free boundary to a search for a single function ~(~, t) which satisfied the 
following eqtmtions : 

div[M-tM~-~(V~)-?Vo)] = - d i v  M'-~W)~ W-~M *-~ •  ( ~ .  O ~ t ~ T )  
0 

(6.1) 
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t 

(aff)t)t -g n.M--IM *-i  (VO + Vo) = - -  n . (M- tW) ,  S W - t M * - t  
0 

•  dt ( ~ r ,  0 < t < T ) ;  (6.2) 

= O, @t[t=~ ~ 0 (~ ~ ~., t = 0),~ (6.3) 

where  a=--(3p/~n) -1, n is the unit vec to r  of the ex t e rna l  no rma l  to the boundary  r of  the reg ion  ~ ,  and 8p/an is 
the der iva t ive  of the p r e s s u r e  p with r e s p e c t  to the n o r m a l  n to r .  The ma t r i x  W(~, t) is the solution of the 
p rob l em 

w ,  = la~v~*w wl ,=o = E, (6.4) W(x)] "': 

v = xt, and M is the m a t r i x  of the Jacob ian  of the mapping (1.7). The o p e r a t o r  V a t  this point denotes the 
g rad ien t  with r e s p e c t  to the Lagrang ian  va r i ab l e s  O, ~2, and }~. If the function r t) is known, then the p e r -  
turbat ion of the p r e s s u r e  P is de te rmined  a s  P = - C t ,  and the v e e t o r X  is  given by the  in tegra l  

t 

X = W ~ W - I M * - i ( V *  + Vo) dt. 
0 

We note that  the function q~(~, t} should sa t i s fy  the condition 

which follows f rom (6.1) and (6.2) when 3p/Sn ~ 0. 

The ex i s t ence  and uniqueness t h e o r e m  of the genera l ized  p r o b l e m  is valid for the p r o b l e m  (6.1)-(6.3). 
We will r e s t r i c t  ou r se lves  here  to the case  in which the fundamental  and pe r tu rbed  motion a r e  i r ro ta t ional .  
At  the s ame  t ime V 0 = V~0, where  AO0 = 0, the m a t r i c e s  M and W coincide,  and the following p rob l em is obtained 
for  the function ~I,=4~+~0: 

div(M-1M*-iV~ ) = 0  for ~ ~ Q , O ~ < t < ~  T; (6.5) 

(aXFt)t +n.M-UII*- IV W = 0  for ~ ~ F. 0 < t <  T; (6.6) 

W----O0(~) , W t = 0  for t = 0 ,  ~ ~. (6.7) 

This p r o b l e m  can,  in its turn,  be reduced  to the Cauchy p r o b l e m  for  a d i f ferent ia l  equation with an 
unbounded nonloeal  ope ra t o r  in the Sobolev space  W~2(F) 

(a*t)~ + K(t)r = O; (6.8) 

* = * 0 , r  at t = 0  (6.9) 

with the des i red  function ~ = # I r -  The ope ra to r  K c o m p a r e s  the functions , ~ W~/~ (F) and the e l emen t  
Kr ~ W~-~( " (r) accord ing  to the ru le :  Wi th  r e s p e c t  to the function $ a solution of Eq. (6.5) is Sought with the 
condition ~ ' [ r  =r  and t h e n / r  = n.M-~M*-~V~/[r is calculated.  The notation K(t) emphas i zes  the dependence 
of  the ope ra to r  K on t (this is a s soc ia ted  with the fac t  that  M depends on t). In the initial condition (6.9) $0 is 
the t r a c e  of  the function O0 (~) ~ W~ (~) on the su r face  :F. 

One can show that  the ope ra t o r  K is s y m m e t r i c a l  and posi t ive  defini te on the subspace  of the Hi lber t  
space  W~2(I ") fo rmed  by the functions ~ with zero  ave r age  value on r .  We will a s s u m e  that the condition 

Op'l--I (6.10) 
---~n} ~ a ( ~ ' t ) ~ a ~  

is Satisf ied for a l l  ~ r ,  and t ~ [0, TI .  Inthis case  one can  t r e a t  Eq. (6.8) as  a hyperbol ic  pseudodif feren-  
t ia l  equation on the f ree  boundary F. 

If the fundamental  solution is such that  F ~ C ~, x, p ~  Ca(Q--T) and (6.10) is  sa t is f ied,  then the solution 
of (6.5)-(6.7) pe rmi t s  the a p r i o r i  e s t i m a t e  [13, 22] 

( vTdr + (Iv l'd  < c (r)1 " IV*01'd  (6.11) 

The solvabi l i ty  of  the p r o b l e m  (6.5)-(6.7) under  the condition (6.10) has been demons t ra ted  in [22] with the 
use  of this e s t ima te .  Under  these  conditions an ex is tence  and uniqueness t heo rem of a solution of the m o r e  
gene ra l  p r o b l e m  (6.1)-(6.3) has been es tab l i shed  [22]. We note that  the p rob l em (6.D-(6.3) can also be reduced 
to an ope ra to r  equation of the type (6.8). This equation will now be inhomogeneous,  and the ope ra to r  K(t) will 
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be nonlocal with respect to t and asymmetrical. However, its main part is a symmetrical and positive definite 

operator, so that the equation mentioned preserves the properties of the hyperbolic equation under the con- 

dition (6.10). 

We emphasize that precisely the condition 8p/Sn < 0 for a= 0 guarantees the correctness of the problem 

of small perturbations. The importance of this condition has been noted in [23, 13, 24] ; the solvability of the 

two-dimensional Cauchy-Poisson problem in an exact formulation in the class of functions with finite smooth- 
hess has been demonstrated in [24], and a remarkable peculiarity of this problem has been established. It 
turns out that the Cauchy problem for linearized equations is correctly posed only when the linearization is 
carried out on the exact solution of the nonlinear equations. Evidently, this same peculiarity is characteristic 
of the problem of the motion of an isolated volume of ideal fluid devoid of surface tension. 

Let us return to the problem of small perturbations (6.1)-(6.3). It is rather difficult to characterize the 
class of fundamental motions in which the inequality (6.10), which guarantees the correctness of the problem 
(6.1)-(6.3), is satisfied. We note, however, that for irrotational motions which are different from a constant 
flow in a solenoidal field of body forces this inequality is certainly satisfied [13, 9]. Physically, condition 
(6.10) indicates that the acceleration of the particles on the free boundary is directed inside the fluid. 

For fundamental motions in which the inequality 

~p/&~ > 0 (6.12) 

o c c u r s  fo r  a l l  ~ E F and t E [0, T], Eq.  (6.8) is  " e l l i p t i c a l ,  n and the  Cauchy  p r o b l e m  for  i t  is  f o r m u l a t e d  
i n c o r r e c t l y  in the A d a m a r  s e n s e .  Cond i t i on  (6.12) can  be s a t i s f i e d  even  for  i r r o t a t i o n a l  mo t ions  i f  the  e n t i r e  
b o u n d a r y  of  the r e g i o n  is  not  f r e e  o r  if  e x t e r n a l  f o r c e s  a r e  a c t i n g  on the f luid.  E x a m p l e s  of  the  i n c o r r e c t n e s s  
of  the p r o b l e m  of s m a l l  p e r t u r b a t i o n s  wi th  a p lane  f r e e  b o u n d a r y  a r e  c o n s t r u c t e d  in [23] ; th is  fac t  was  f i r s t  
noted already by Rayleigh (see, e.g., [25]). Concerning the motion of a fluid volume by inertia, strong vorticity 
of the motion may be the cause here of the incorrectness of the problem of small perturbations. Thus if one 

takesthe solution from Sect. 3 as the fundamental one describing the motion of a rotating ellipsoid, then the 
inequality Op/Sn> 0 is surely satisfied for t close to t,. 

When 0p/On> 0, one can hope for solvability of the linearized problem (6.8) or the more general problem 
only in the class of analytic functions ; therefore, one should not expect solvability of the original nonlinear 
problem (1.9)-(1.11) in the case of arbitrary initial data in classes of functions of finite smoothness. 

It is interesting to note that in the case in which the fundamental motion is uniform rotation of the fluid as 

a rigid body, the problem of small perturbations of it has been correctly formulated [26], although the inequality 
8p/On> 0 is satisfied. This case is an exceptional one, since in a rotating coordinate system the fundamental 
motion is rest. 

Surface tension has not been taken into account in the preceding discussions of this section. As has been 
noted [23], surface tension has proven to be the factor which stabilizes short-wavelength perturbations and 
makes the mathematical problem of small perturbations a correctly posed one. 

The problem of small perturbations of an arbitrary motion of an ideal fluid which possesses surface 
tension has been discussed in [27]. The equations of small perturbations in Lagrangian coordinates have the 
form 

d i w i l - W  = 0; (6.13) 

av ~""~ v ~[a(,-~ ~ o ( v ) , , . ' ,  , (~(,.~'12 (o(,-)].= 
at ~ atx~ + r ibS .x ) -  [ ~  I J, = ~a--~x)/ - -  ~o(x): +M*-~[~ -- a(~)~l[iM-Wdt+a(x)j ~, .,,~(*-tVP = O, a , ~ , .  t.~>O; 

,I (6.14) 

a D  r 

(6.15) 

! 

B=p  tn.M-tVdt, &~F, t > O ;  (6.16) 

Vlt= o = Yo(g), divVo = O, (6.17) 

where v = x t is the velocity vector of the fundamental flow, V is the velocity perturbation vector, P is the per- 
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turbation of the p res su re ,  a> 0 is the surface  tension coefficient,  q2=R12+R22 , where R 1 and R 2 a re  the pr in-  
cipal radi i  of curvature  of normal  c ross  sections of the sur face  Ft, ap/On J Ft is the derivative of p with 
r e spec t  to the outer  normal  to Ft ,  and n = n( 0 is the outer normal  to F. The function p(}, t) is given by the 
equation p = IV/I(JM*-IV]]) -', where f (0  = 0 is the equation of F. It is assumed that the surface F belongs to 
the c lass  C 3 and has a local paramet r iza t ion  of the form }i = }i(a,/~) (i = 1, 2, 3). Under the limiting condition 
(6.15) A F  is the resu l t  of the t ransformat ion  to Lagrangian coordinates of the L a p l a c e - B e l t r a m i  operator  Art 
[19]: 

where E = ]M~]2; G = [M~p]2; i v = M ~ . M ~ ,  and ~ = (EG - F2) 1/2. The opera tor  ~F(t)  depends significantly on 
the t ime t. 

The perturbat ion vector  is r ecovered  f rom the function V(~, t) by the equation 

X = M S M-1Vdt" 
0 

For i r rota t ional  body forces  Eq. (6.14) has the integral  

L 6 

and by means of the rep lacement  ~ t = - P  the problem reduces  to a search for the single function ~(~, t). 

We note that the express ion  in the square  brackets  of Eq. (6.14) vanishes if the fundamental motion is 
i r rota t ional  (as follows f rom (6.4), this is possible only when M - W ) .  Fur the rmore ,  f i r s t -o rde r  differential 
opera tors  a re  contained in Eqs. (6.13) and (6.14), and a second-orde r  differential operator  ~F(t) is present  in 
the boundary condition. Nevertheless ,  this problem reduces ,  s imi la r ly  to the problem (6.1)-(6.3), to a non- 
local Cauchy prob lem in some Hilbert  space. However,  in cont ras t  to the problem (6.1)-(6.3) it is co r r ec t  when 
a>0 independently of the sign of  Op/OnlF. A pr io r i  es t imates  of the solution of the problem (6.13)-(6.17) of the 
ene rgy - in t eg ra l  type a re  obtained in [27], and an existence and uniqueness theorem of a general ized solution of 
it is proven. This r e su l t  conf i rms the role  of surface tension as the regu la r i ze r  of  the problem of the motion 
of an ideal fluid with a free boundary. 

In the par t icu lar  case in which F does not depend on t and the fundamental motion is uniform rotation of 
the fluid as a r igid body, the problem (6.13)5(6.17) has been investigated in detail in [19]. 

The problem of smal l  per turbat ions of the motion of a viscous capi l lary  fluid has been studied in detail 
only in the case in which the fundamental motion is r e s t  o r  uniform rotat ion [19]. Per turbat ions of a rb i t r a ry  
fundamental motion when a= 0 and v > 0 have been discussed in [6]. 

A different formulat ion of the problem of perturbations of motion with a f ree boundary is possible:  The 
region in which the mapping (1.7) is defined var ies  in the case of a constant initial velocity field. This problem 

was investigated in [13]. 

7. Stability of the Motion. Let some solution of the problem (1.9)-(1.11) defined for all t_> 0 be known. 
Then it is possible to pose the question of the stabili ty of this solution with r e spec t  to a change of the initial 
data. If the per turbat ions  caused by this change are  small ,  the problem of the stability can be discussed 
within the f ramework  of  the linear theory.  

One should note that up to the present  t ime there a re  no resu l t s  of any kind on the solvability of the 
problem (1.9)-(1.11) on an infinite time interval.  Therefore ,  the problem of the justification of the linear 
approximat ion in the theory  of  the stabili ty of motion with a free boundary is now very  far f rom solution. 

If the fundamental  solution is not t ime-independent,  then the coefficients of Eqs. (6.13)-(6.17) depend on 
the time, which makes obtaining the sufficient conditions of stabili ty f rom the linear approximation ext remely  
difficult in the genera l  case .  All the  resu l t s  obtained up to the presen t  time on the stabili ty of nonsteady 
motions of a finite fluid mass a re  associa ted with the considerat ion of specific examples with a simple 
geomet ry  of the free surface.  In these examples the fluid is assumed to be ideal, and its motion is assumed to 
be i r ro ta t ional  (the exception is [28], in which the stabil i ty of a rotat ing r ing of an ideal fluid is investigated). 
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Firs t ,  let us discuss the per turbat ions of the i r rotat ional  motion of an ideal fluid with a=0.  hi this case 
the problem reduces  to a search  for a function ~(}, t) which satisfied (6.5) and (6.6). We will assume that the 
elements  of the matr ix  M and the coefficient a(~, t) a re  defined and a re  sufficiently smooth functions of ~ and t 
in the c y l i n d e r Q T = ~ X  [0, T] for any T>0.  The boundary I" of the region ~ is also assumed to be sufficiently 
smooth. In addition, let the "hyperbolici ty condition" (6.10) be satisfied for any (~, t) ~ r •  [0, T] with some 
a0(T) > 0 (it is assumed that a0 - -0  as T--* oo). This condition guarantees the co r rec tness  of the problem under 
considerat ion.  

The es t imate  (6.11) is valid for the solutions of the problem (6.5)-(6.7). This es t imate  permits  adopting 
the quantity N (t) = II T, [zL,(r) -t- il V$ ~,,.e) as a measure  of the stability and calling the fundamental solution stable 
if N(t) is bounded for all t>0  for any (D 0 ~ Wi(~2) and unstable in the opposite case.  Finally, such a definition of 
stabil i ty is not uniquely possible.  It is proposed in [13] to charac te r i ze  stabil i ty in t e rms  of the behavior as 
t - -  ~ of the component normal  to Ft  of the per turbat ion vector  of the free boundary X(~, t), ~ ~ F. In the 
genera l  case  it is g iven  by the equation 

t (7.1) 
R ~  nrt.X : p S n'M-1Vdt,  

o 

where p = [V/I(IM,-,VIi) -x, and nFt  is the unit vector  of the outer normal  to the surface r at  the point x(~, t). 

If R(~, t) - ~  as t--oo for some ~ ~ F, then the local departure  of the free surface f rom its tmperturbed 
state increases  without l imit in the space (x). Thus the quantity R(}, t) provides a ve ry  delicate charac te r i s t i c  
of the stability of  the motion, whereas the function N(t) is its crude integrated charac te r i s t i c .  It may happen 
that a cer ta in  solution is stable in the integrated sense,  but the function R increases  without l imit at  individual 
points of the boundary as t--* oo. Such a situation actually a r i ses  in problems on the stabili ty of motions with a 
l inear velocity field described by Eqs. (3.1)-(3.6). In the par t icular  case g= 0, b = 0, and x~0 = 0, 

Op/On = --q(t) lN[[, q(t) = Sp(A'A-')2/Sp(A-~A*-XN). 

The stability of this class  of  motion is investigated in more  detail below. The integral  identity (nenergy inte-  
gral  n) 

! t  a; ' -~ itu(g, t)i'dQ§ ~ I ~ ' , ( g ,  t ) 1 2 d r = i l V , ~ o ( ~ ) l ~ ' d ~  - (7.2} 
.q ~2 

? 

- - 2 ~ . l ' U ( g  , t).igA-~U(~,t)dg~dt+ ~ ~ JW~(~, t )pdrdt  

occurs ,  which is valid for any solution of the problem (6.5)-(6.7), where U(~, t) == A *-~ (t)V~(g, t). 

It is a l ready possible to ex t rac t  some information f rom the identity (7.2) about the behavior of ]l~Ft tlLgD, 
e.g. ,  for specific motions as t--- ~o without solving the problem (6.5)-(6.7). 

As an example,  let us consider  the two-dimensional  problem of the stability of deformed ellipse. Here 
the fundamental solution is given by Eq. (3.1), where x0 = 0 and A= diag (al, a2). The functions a~(t) and a2( t  ) a r e  
defined by Eqs. (3.8), in which one sets w = 0. Let  us assume for definiteness that b > 0; then the semimajor  
axis of  the el l ipse at(t) is found f rom the equation 

" d~ (7.3) billet = !'(V~ + l)t/2~, 
[ 

whence al=b242t+O(t -t) as t--*oo. We obtain f rom the identity (7.2) the est imates  

d r y , ,  - , ,  } tVr  
'r ('~ +~): h 

!,o ,~ ~,en < ~ , ,  t vr ! ~ ~ = o u - ' )  

as t - - ~ ,  where ~ is a c i rc le  [} t<c ,  s is the c i rc le  [}l=c,  and @0 is a harmonic function ini2. 

More detailed information on the solution of the problem (6.5)-(6.7) is neces sa ry  to obtain the es t imate  
![ T e,i/L,(a). It turns out that the eigenfunctions of the opera to r  K-(t) do not depend on t [29] and the p rob lem 
reduces  to the Cauchy problem for a decomposing sys tem of ord inary  second-order  differential equations. It 
has been shown in [29] that if (I)0I r ~ L~(F),: the quantity ~F l[~..(r) is bounded for all  t > 0. If (I), [r ~ W~/e (F), 
then ~tt ,  ~ l '  and ,I,~2 belong to L2(F ) for  a fixed t, and their norms in L2(F) are  bounded for all t>0 .  One 

153 



should note that in the case in which the initial function if0 is even with r e spec t  to ~l and different f rom a con- 
slant, the es t imate  [l T IIL,r ( t - i ) ,  t--~-co occurs .  The solution which is even in ~l descr ibes  motion with an 
impenetrable  wall ~2 = 0. 

Calculation of the normal  component of the perturbat ion vector  according to Eq. (7.1) for the case 
~0lr = sinn 0, where 0 =arctan(~z/~t), gives 

o sin, 0 ' o ( t - ' ) ]  (7 .4)  
R'~  (cos20_~_a~sin. O)l/z [5'n~- 

as t-*~o, Here Yn is some constant,  and al(t) is a function defined by Eq. (7.3). It is evident f rom (7.4) that 
outside the zones ]0l < e, In --  0l < e (e>0 is specified) R=O(t) as t - - ~ .  Thus the free boundary is unstable 
i n th i s  case .  Moreover ,  ~llL~(r)-+0 as t - * ~ .  

If (I)0[r = cos nO , n = l ,  2, ..., then as t ~ o o  

a 1 c o s  nO ~ , 

with constant  6n. It follows f rom this that for this solution the instability of the free boundary is localized in 
the range of angles [0] = O(t -1) and ]Ir-0I = O(Ci). This conclusion is applicable, i npa r t i cu l a r ,  to the problem of 
the stability of a deformed eltipse when an impenetrable wall ~2 = 0 is present .  As t-~ o0 the fluid approaches 
the wall, and this stabil izes the free boundary. 

Another example is the stabil i ty of i r rota t ional  ax i symmet r ic  motion with a l inear velocity field. The 
fundamental solution is descr ibed in Sect. 3 and is interpreted as the motion of an ellipsoid of revolution. The 
mapping (3.1) has the fo rm x = diag0n, t / V ~ ,  t/V:m}~ here.  The function m(t) is defined by Eq. (3.7), in which 
w = 0, and by the condition m(0) = 1. The region ~2 is a sphere  I} I < c, and r is its boundary. The identity (7.2) 
leads to the es t imates  

= o ( 1 ) ,  

as t ~ r162 for an oblate ellipsoid (which cor responds  to m ~  0 as t ~  oo) ; 

where i = 1~ 2, for a proiate ellipsoid. Moreover ,  it is possible to point out initial data such that R > k t  as 
t--~ ~o with some constant  k > 0 [30]. 

The resu l t s  presented above indicate the stabil i ty for the linear approximation of the fundamental motions 
considered if one takes the norm in L 2 of the values of the potential ~ or its derivatives as the measure  of 
stability. However,  if one a s s e s s e s  the stabil i ty f rom the departure  of the free boundary f rom its unperturbed 
state,  the indicated motions should be recognized as unstable. 

Only i r ro ta t ional  per turbat ions  have been considered above. If one conserves  the i rrotat ional i ty  of the 
fundamental motion but widens the c lass  of perturbati~)ns by removing the condition of  i r rotat ional i ty  f rom 
them, then a solution which is stable with r e spec t  to i r rotat ional  perturbat ions may become unstable. Appro-  
pr ia te  examples a re  given in [21]. The exact  solutions discussed in Sec. 3, which descr ibe the motions of a 
rotat ing ellipsoid and a rotat ing ell ipse,  indicate this behavior.  

In addition to the cases  discussed above, the stabil i ty of the following i r rotat ionat  motions of an ideal 
fluid has been investigated in the linear approximation at present :  the motion of a spher ical  layer [12] and the 
motion of a c i r cu la r  r ing  [13, 16]. 

Taking capi l lary  forces  into account  in the problem of smal l  per turbat ions  leads, as has a l ready been 
noted, to the c o r r e c t l y  formulated p rob lem (6.13)-~(6.17). Concerning the effect of capi l lar i ty  on stability~ the 
number of specific problems considered here is ve ry  small .  It is known that surface tension suppresses  the 
growth of two-dimensional  per turbat ions  of the radial  motion of a r ing [16] and the motion of a rotating r ing 
[28]. On the other  hand, the introduction of surface tension resul ts  i n the  exponential growth as t - * ~  of ax i sym-  
met r ic  per turbat ions of the nonsteady motion of a fluid cylinder whose lateral  surface is  f ree  and whose bases 
are  solid impenetrable  walls [31]. 

Problems of the stabil i ty of equil ibrium states of a fluid volume a re  not considered in this paper.  Suffi- 
cient conditions of stabil i ty and instabil i ty with r e spec t  to finite perturbat ions a re  obtained in this problem 
which are  based on the resul ts  of [32], in which an analogue of  the Lagrange stability theorem is establ ished for 
the motion of  a viscous capi l lary f luid.  An exposition of this group of problems is contained in [19]. 
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The problem of limiting modes of the motion of a fluid volume of finite mass as t - -  ~ is c losely related 
to the stabili ty problem. The examples discussed above of the motions of an ideal fluid and a viscous ring 
exhibit the d ivers i ty  of the possibil i t ies which ar i se  here.  This problem is far f rom solution in the general  

case. There a re  only the following part ia l  resu l t s  [9]. 

Let us assume that a c lass ica l  solution of the problem (1.9)-(1.11) with g=0  exists for all t>0 ,  and that 
the mapping (1.7) specifies di f feomorphism of the regions ~2 and ~2 t for any t. Let  us denote the diameter  of 
the region fit as d(t), where 

d(t)  = max{ix --  Yi : x, y ~ Qt}. 

L e t v 0 ( ~ ) ~ O a n d r o t v 0 = O f o r  ~ O .  Thend( t ) - -~oas t - -*~o.  

In other words,  in the case of the i r rotat ional  motion by inert ia of a finite volume of ideal fluid with va r i -  
able veloci ty  and zero surface tension the diameter  of the volume increases  without limit as time goes by. 

The proof of this ~esult is based on the superharmonic i ty  proper ty  of the p res su re  in the i r rotat ional  
motion of the fluid and on the identity [33] 

d" t' ~f ! pdff~ t, 

which is valid for a r b i t r a r y  motion of an isolated volume of a viscous capi l lary  fluid. 

8. Boundary Layers .  Let  us assume that the solution of the problem (1.1)-(1.4) with ~>0 is known. How 
does one find its asymptote as v--* 07 It is natural  to expect that outside narrow layers  near the free boundary 
the motion will be close to the motion of an ideal fluid. An abrupt change of the derivatives of the velocit ies 
occurs  in the boundary layers  which provides for vanishing of tangential s t r e s ses  on the free boundary. A 
formal  asymptote  of the solution of this problem in the two-dimensional  and ax i symmet r i ca l  cases  is given in 
[34], and the boundary layers  in problems of the i r rota t ional  motion of an ellipsoid of revolution and an 
ell ipse with ~= 0 are  investigated in [35, 36] (see Sec. 3). 

The only example in which it has proven possible to justify the validity of an asymptot ic  expansion is the 
problem of a rotat ing ring. The asymptote of the solution is Sought in the form 

4 +V 4 + + + + + . . . ,  

_( ( i )  _ : ~ r  - ( i l  - -  r i ~ r :  , I / v r i  - i - y r , " ) - : . . . ,  i = t ,  2. 

The notation v0, X, and r i  a re  introduced in See. 4. The functions v0(k) , r~ k), and )/(k) (k=0,  1, 2, ...) a re  found 
with the help of the f i r s t  L y u s t e r n i - V i s h i c  i terat ive process .  When k = 0, we obtain the solution of the problem 

a r ing  of ideal fluid. Functions of the boundary- layer  type ~}k)" (i = 1, 2, k = 1, 2...) a re  de te r -  of the motion of 
mined as a r e su l t  of the second i terative p rocess .  They compensate discrepancies  on condition of the absence 
of tangential s t r e s s  on the free boundaries of the r ing.  An est imate  is given of the e r r o r  of the asymptot ic  
expansion as v - - 0  which is valid on any finite time interval  if ~= 0 and on any interval 0-< t <- T < co on which 
0 < 5 -< rl(~ in the case a r 0 [37]. 

The problem of construct ing an asymptote  of the solution of the problem (1.1)-(1.4) as v - - 0  in the general  
th ree-d imens ional  case  remains  open. Another unsolved problem is finding the asymptote of the solution of the 
problem of the motion of a finite fluid mass  as ~--* 0. 

The authors express  their gratitude to L. V. Ovsyannikov, to whom they a re  obliged for his in teres t  in 
the problem of the motion of a finite fluid mass .  
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VORTICAL MOMENTUM OF BOUNDED IDEAL 

INCOMPRESSIBLE FLUID FLOWS 

V. A.  V l a d i m i r o v  UDC 532.51 

1. The true momentum 

I ~ f vdV 

exists in three-d imensional  homogeneous incompress ible  fluid flows filling the whole space and at r e s t  at  
infinity only when the velocity field v(r ,  t) sat isfies the conditions [1] 

r~l v(r,  t) I-+ 0 as r ~-~ I r [-+ oo,~ (1.1) 

which excludes the important  cases  of flows possess ing  source  and dipole asymptot ics .  ~ (1.1) is satisfied, 
then I-- O. 

Indeed j0 v f l V  ----- ~ (xwi:) dV -~ ~ xivhdS h. (!.2) 

The continuity equation and the rule of summation over  repeated indices are  used, and x k a re  Car tes ian  
coordinates .  

The last  integral  in (1.2) is taken over an infinitely remote  surface.  It equals zero because of (1.1) so 
that I = 0. Therefore ,  the true momentum either does not exist  for the flows under considerat ion,  or is zero.  

For this reason,  the so-cal led  Hvortical" momentum of the flow is introduced 

P-----7 r.<o)dV, 0) __--__- rot v. (1.3) 

This quantity was defined [2] only for fluid flows filling all space. It possesses  ~he following proper t ies :  

a) It exists if r4]w(r, t ) ] - -0  as r - - ~ ;  this r equ i rement  is less constraining than (1.1) since it imposes a 
cons t ra in t  on the behavior of the vortex field and not on the velocity at  infinity; 

b) it posses ses  the dimensionality of a momentum; 

c) it is independent of the select ion of the origin since SeJdV -~ 0 in the case under considerat ion;  

d) Under the effect  of external  volume forces f(r, t) it var ies  analogously to the physical  momentum 
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